Editing
CCU:GPU Cluster Quick Start
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Accessing ports on the pod from your own system == Some monitoring tools for deep learning use ports on the pod to convey information via a browser interface, an example being Tensorboard. You can forward these ports to your own local host using kubectl as a proxy. Follow the [https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/ tutorial here] to learn how it works. Syntax for port-forwarding: <syntaxhighlight> > kubectl port-forward <pod-name> <dest-port>:<source-port> </syntaxhighlight> kubectl will now continue running as a proxy. While it is running, you can access the pod service on "localhost:<dest-port>" in the browser on your own machine. You could even create containers which provide interactive environments via a web interface, e.g. a Jupyter notebook server.
Summary:
Please note that all contributions to Collective Computational Unit may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
CCU:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Project page
Discussion
English
Views
Read
Edit
View history
More
Search
Navigation
Collective Computational Unit
Main page
Projects
Tutorials
GPU Cluster
Core Facilitys
Mediawiki
Recent changes
Random page
Help
Tools
What links here
Related changes
Page information